Toward Bioremediation of Methylmercury Using Silica Encapsulated Escherichia coli Harboring the mer Operon
نویسندگان
چکیده
Mercury is a highly toxic heavy metal and the ability of the neurotoxin methylmercury to biomagnify in the food chain is a serious concern for both public and environmental health globally. Because thousands of tons of mercury are released into the environment each year, remediation strategies are urgently needed and prompted this study. To facilitate remediation of both organic and inorganic forms of mercury, Escherichia coli was engineered to harbor a subset of genes (merRTPAB) from the mercury resistance operon. Protein products of the mer operon enable transport of mercury into the cell, cleavage of organic C-Hg bonds, and subsequent reduction of ionic mercury to the less toxic elemental form, Hg(0). E. coli containing merRTPAB was then encapsulated in silica beads resulting in a biological-based filtration material. Performing encapsulation in aerated mineral oil yielded silica beads that were smooth, spherical, and similar in diameter. Following encapsulation, E. coli containing merRTPAB retained the ability to degrade methylmercury and performed similarly to non-encapsulated cells. Due to the versatility of both the engineered mercury resistant strain and silica bead technology, this study provides a strong foundation for use of the resulting biological-based filtration material for methylmercury remediation.
منابع مشابه
Cloning and Characterization of a mer Operon From Natural Aquatic Bacteria
Mercury is a highly toxic element and has caused numerous cases of human toxicity throughout history. Methylmercury is the most toxic form of mercury and bioaccumulates in fish consumed by humans. Mercury resistant bacteria exist in nature that have the ability to detoxify methylmercury by a two-enzyme system encoded on the mer operon. Currently only mer operons cloned from clinical isolates ar...
متن کاملManufacturing of bioreactive nanofibers for bioremediation.
Recombinant Escherichia coli (E. coli) cells were successfully encapsulated in reactive membranes comprised of electrospun nanofibers that have biocompatible polyvinyl alcohol (PVA)-based cores entrapping the E. coli and silica-based, mechanically sturdy porous shells. The reactive membranes were produced in a continuous fashion using a coaxial electrospinning system coupled to a microfluidic t...
متن کاملSimple whole-cell biodetection and bioremediation of heavy metals based on an engineered lead-specific operon.
A lead-specific binding protein, PbrR, and promoter pbr from the lead resistance operon, pbr, of Cupriavidus metallidurans CH34 was incorporated into E. coli in conjunction with an engineered downstream RFP (red fluorescence protein), which allowed for highly sensitive and selective whole-cell detection of lead ions. The subsequent display of PbrR on the E. coli cell surface permitted selective...
متن کاملCysteine and histidine residues are involved in Escherichia coli Tn21 MerE methylmercury transport
Bacterial resistance to mercury compounds (mercurials) is mediated by proteins encoded by mercury resistance (mer) operons. Six merE variants with site-directed mutations were constructed to investigate the roles of the cysteine and histidine residues in MerE protein during mercurial transport. By comparison of mercurial uptake by the cell with intact and/or variant MerE, we showed that the cys...
متن کاملCloning and expression of rhl AB operon under the control of tac promoter in E. coli
Today, efforts go towards the replacement of chemical surfactants by natural biological biosurfactants (biosurfactant), as these materials are not carcinogenic and highly compatibile with the environment. One of the main classes of biosurfactants is rhamnose containing glycolipid biosurfactant (rhamnolipids). This type of biosurfactants can be applied in many industries such as oil industry, ph...
متن کامل